Author:
Zhuo Zhengyuan,Li Dongxing,Zeng Tiaoying
Abstract
AbstractIf $\mathcal{H}_{\nu}=(\nu _{n,k})_{n,k\geq 0}$
H
ν
=
(
ν
n
,
k
)
n
,
k
≥
0
is the matrix with entries $\nu _{n,k}=\int _{[0,\infty )}\frac{ t^{n+k}}{n!}\,d\nu (t)$
ν
n
,
k
=
∫
[
0
,
∞
)
t
n
+
k
n
!
d
ν
(
t
)
, where ν is a nonnegative Borel measure on the interval $[0,\infty )$
[
0
,
∞
)
, the matrix $\mathcal{H}_{\nu}$
H
ν
acts on the space of all entire functions $f(z) =\sum_{n=0}^{\infty} a_{n} z^{n}$
f
(
z
)
=
∑
n
=
0
∞
a
n
z
n
and induces formally the operator in the following way: $$ \mathcal{H}_{\nu}(f) (z)=\sum_{n=0}^{\infty} \Biggl(\sum_{k=0}^{\infty}\nu _{n,k}a_{k}\Biggr)z^{n}. $$
H
ν
(
f
)
(
z
)
=
∑
n
=
0
∞
(
∑
k
=
0
∞
ν
n
,
k
a
k
)
z
n
.
In this paper, for $0< p\leq \infty $
0
<
p
≤
∞
, we classify for which measures the operator $\mathcal{H}_{\nu}(f)$
H
ν
(
f
)
is well defined on $F^{p}$
F
p
and also gets an integral representation, and among them we characterize those for which $\mathcal{H}_{\nu}$
H
ν
is a bounded (resp., compact) operator between $F^{p} $
F
p
and $F^{\infty }$
F
∞
.
Funder
Natural Science Research Project of Guangdong Education Department
Guangdong Basic and Applied Basic Research Foundation
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Bao, G., Wulan, H.: Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl. 409, 228–235 (2014)
2. Chatzifountas, C., Girela, D., Peláez, J.: A generalized Hilbert matrix acting on Hardy spaces. J. Math. Anal. Appl. 413, 154–168 (2014)
3. Studies in Advanced Mathematics;C. Cowen,1995
4. Diamantopoulos, E.: Hilbert matrix on Bergman spaces. Ill. J. Math. 48, 1067–1078 (2004)
5. Diamantopoulos, E., Siskakis, A.: Composition operators and the Hilbert matrix. Stud. Math. 140, 191–198 (2000)