A remark about asymptotic stability in Duffing equations: lateral stability in Comb-drive finger MEMS

Author:

Núñez D.,Murcia L.

Abstract

AbstractIn this short paper we tackle two subjects. First, we provide a lower bound for the first eigenvalue of the antiperiodic problem for a Hill’s equation based on $L^{p}$ L p -conditions, and as a consequence, we introduce an adjusted statement of the main result about the asymptotic stability of periodic solutions for the general Duffing equation in (Torres in Mediterr. J. Math. 1(4):479–486, 2004) (Theorem 4). This appropriate version of the result arises because of one subtlety in the proof provided in (Torres in Mediterr. J. Math. 1(4):479–486, 2004). More precisely, the lower bound of the first antiperiodic eigenvalue associated with Hill’s equations of potential $a(t)$ a ( t ) employed there may be negative, thus the conclusion is not completely attained. Hence, the adjustments considered here provide a mathematically correct result. On the other hand, we apply this result to obtain a lateral asymptotic stable periodic oscillation in the Comb-drive finger MEMS model with a cubic nonlinear stiffness term and linear damping. This fact is not typical in Comb-drive finger devices, thus our results could provide a new possibility; a new design principle for stabilization in Comb-drive finger MEMS.

Funder

Pontificia Universidad Javeriana

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3