Abstract
AbstractIn this short paper we tackle two subjects. First, we provide a lower bound for the first eigenvalue of the antiperiodic problem for a Hill’s equation based on $L^{p}$
L
p
-conditions, and as a consequence, we introduce an adjusted statement of the main result about the asymptotic stability of periodic solutions for the general Duffing equation in (Torres in Mediterr. J. Math. 1(4):479–486, 2004) (Theorem 4). This appropriate version of the result arises because of one subtlety in the proof provided in (Torres in Mediterr. J. Math. 1(4):479–486, 2004). More precisely, the lower bound of the first antiperiodic eigenvalue associated with Hill’s equations of potential $a(t)$
a
(
t
)
employed there may be negative, thus the conclusion is not completely attained. Hence, the adjustments considered here provide a mathematically correct result. On the other hand, we apply this result to obtain a lateral asymptotic stable periodic oscillation in the Comb-drive finger MEMS model with a cubic nonlinear stiffness term and linear damping. This fact is not typical in Comb-drive finger devices, thus our results could provide a new possibility; a new design principle for stabilization in Comb-drive finger MEMS.
Funder
Pontificia Universidad Javeriana
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis