Abstract
AbstractIn this paper, we introduce the notions of regularly invariant convergence, regularly strongly invariant convergence, regularly p-strongly invariant convergence, regularly $(\mathcal{I}_{\sigma },\mathcal{I}^{\sigma }_{2})$
(
I
σ
,
I
2
σ
)
-convergence, regularly $(\mathcal{I}_{\sigma }^{*},\mathcal{I}^{\sigma *}_{2})$
(
I
σ
∗
,
I
2
σ
∗
)
-convergence, regularly $(\mathcal{I}_{\sigma },\mathcal{I}^{\sigma }_{2} )$
(
I
σ
,
I
2
σ
)
-Cauchy double sequence, regularly $(\mathcal{I}_{\sigma }^{*},\mathcal{I}^{\sigma *}_{2})$
(
I
σ
∗
,
I
2
σ
∗
)
-Cauchy double sequence and investigate the relationship among them.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference46 articles.
1. Altay, B., Başar, F.: Some new spaces of double sequences. J. Math. Anal. Appl. 309(1), 70–90 (2005)
2. Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219(18), 9821–9826 (2013)
3. Braha, N.L., Srivastava, H.M., Mohiuddine, S.A.: A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl. Math. Comput. 228, 162–169 (2014)
4. C̣akan, C., Altay, B., Mursaleen, M.: The σ-convergence and σ-core of double sequences. Appl. Math. Lett. 19, 1122–1128 (2006)
5. Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $\mathcal{I}$ and $\mathcal{I}^{*}$-convergence of double sequences. Math. Slovaca 58(5), 605–620 (2008)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献