Abstract
AbstractRecently, El-Deeb and Cotîrlă (Mathematics 11:11234834, 2023) used the error function together with a q-convolution to introduce a new operator. By means of this operator the following class $\mathcal{R}_{\alpha ,\Upsilon}^{\lambda ,q}(\delta ,\eta )$
R
α
,
ϒ
λ
,
q
(
δ
,
η
)
of analytic functions was studied: $$\begin{aligned} &\mathcal{R}_{\alpha ,\Upsilon }^{\lambda ,q}(\delta ,\eta ) \\ &\quad := \biggl\{ \mathcal{ F}: {\Re} \biggl( (1-\delta +2\eta ) \frac{\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(\zeta )}{\zeta}+(\delta -2\eta ) \bigl(\mathcal{H} _{\Upsilon}^{\lambda ,q}\mathcal{F}(\zeta ) \bigr) ^{{ \prime}}+\eta \zeta \bigl( \mathcal{H}_{\Upsilon}^{\lambda ,q} \mathcal{F}( \zeta ) \bigr) ^{{{\prime \prime}}} \biggr) \biggr\} \\ &\quad >\alpha \quad (0\leqq \alpha < 1). \end{aligned}$$
R
α
,
ϒ
λ
,
q
(
δ
,
η
)
:
=
{
F
:
ℜ
(
(
1
−
δ
+
2
η
)
H
ϒ
λ
,
q
F
(
ζ
)
ζ
+
(
δ
−
2
η
)
(
H
ϒ
λ
,
q
F
(
ζ
)
)
′
+
η
ζ
(
H
ϒ
λ
,
q
F
(
ζ
)
)
″
)
}
>
α
(
0
≦
α
<
1
)
.
For these general analytic functions $\mathcal{F}\in \mathcal{R}_{\beta ,\Upsilon}^{\lambda ,q}(\delta , \eta )$
F
∈
R
β
,
ϒ
λ
,
q
(
δ
,
η
)
, we give upper bounds for the Fekete–Szegö functional and for the second and third Hankel determinants.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Ali, R.M.: Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 26, 63–71 (2003)
2. Ali, R.M., Badghaish, A.O., Ravichandran, V., Swaminathan, A.: Starlikeness of integral transforms and duality. J. Math. Anal. Appl. 385, 808–822 (2012)
3. Alzer, H.: Error function inequalities. Adv. Comput. Math. 33, 349–379 (2010)
4. Babalola, K., Opoola, T.O.: On the coefficients of certain analytic and univalent functions. In: Dragomir, S.S., Sofo, A. (eds.) Advances in Inequalities for Series, pp. 5–17. Nova Science Publishers, New York (2008)
5. Carlitz, L.: The inverse of the error function. Pac. J. Math. 13, 459–470 (1963)