Abstract
AbstractIn this paper, based on the existing Hölder’s inequality, some new three-tuple diamond-alpha integral Hölder’s inequalities on time scales are proposed and the related theorems and corollaries are given. At the same time, we also give the relevant conclusions and proof ofn-tuple diamond-alpha integral Hölder’s inequalities on time scales.
Funder
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference19 articles.
1. Ozkan, U.M., Sarikaya, M.Z., Yildirim, H.: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 21, 993–1000 (2008)
2. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, Würzburg, Germany (1988)
3. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, New York (2014)
4. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)
5. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018)