Author:
Asim Muhammad,Ayoob Irshad,Hussain Amjad,Mlaiki Nabil
Abstract
AbstractIn this article, we analyze the boundedness for the fractional bilinear Hardy operators on variable exponent weighted Morrey–Herz spaces ${M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot)}(w)}$
M
K
˙
q
,
p
(
⋅
)
α
(
⋅
)
,
λ
(
w
)
. Similar estimates are obtained for their commutators when the symbol functions belong to BMO space with variable exponents.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)
2. Faris, W.G.: Weak Lebesgue spaces and quantum mechanical binding. Duke Math. J. 43, 365–373 (1976)
3. Chris, M., Grafakos, L.: Best constant for two nonconvolution inequalities. Math. Z. 123, 1687–1693 (1995)
4. Fu, Z.W., Grafakos, L., Lu, S.Z., Zhao, F.Y.: Sharp bounds for m-linear Hardy and Hilbert operators. Houst. J. Math. 38(1), 225–244 (2012)
5. Persson, L.E., Samko, S.G.: A note on the best constants in some Hardy inequalities. J. Math. Inequal. 9(2), 437–447 (2015)