Abstract
AbstractLet $\{f_{n}\}_{n \in \mathbb {N}}$
{
f
n
}
n
∈
N
be a sequence of integrable functions on a σ-finite measure space $(\Omega, \mathscr {F}, \mu )$
(
Ω
,
F
,
μ
)
. Suppose that the pointwise limit $\lim_{n \uparrow \infty } f_{n}$
lim
n
↑
∞
f
n
exists μ-a.e. and is integrable. In this setting we provide necessary and sufficient conditions for the following equality to hold: $$ \lim_{n \uparrow \infty } \int f_{n} \, d\mu = \int \lim_{n \uparrow \infty } f_{n} \, d\mu. $$
lim
n
↑
∞
∫
f
n
d
μ
=
∫
lim
n
↑
∞
f
n
d
μ
.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference9 articles.
1. Bogachev, V.I.: Measure Theory, vol. 1. Springer, Berlin (2007)
2. Hildebrandt, T.H.: On the interchange of limit and Lebesgue integral for a sequence of functions. Trans. Am. Math. Soc. 33, 441–443 (1931)
3. Jeffery, R.L.: The integrability of a sequence of functions. Trans. Am. Math. Soc. 33, 433–440 (1931)
4. Kamihigashi, T.: A generalization of Fatou’s lemma for extended real-valued functions on σ-finite measure spaces: with an application to infinite-horizon optimization in discrete time Arch. Inequal. Appl. 2017, 24 (2017)
5. Pratt, J.W.: On interchanging limits and integrals. Ann. Math. Stat. 31, 74–77 (1960)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献