Abstract
AbstractLet $(X,d,\mu )$
(
X
,
d
,
μ
)
be a non-homogeneous metric measure space satisfying the geometrically and upper doubling measure conditions. In this paper, the boundedness in Lebesgue spaces for multilinear strongly singular integral operators on non-homogeneous metric measure spaces is proved. As an application, the boundedness in Morrey spaces for multilinear strongly singular integral operators is also obtained.
Funder
Natural Science Foundation of China
Natural Science Foundation of Education Committee of Anhui Province
Excellent Young Talents Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference40 articles.
1. Alvarez, J., Milman, M.: $H^{p}$ continuity properties of Calderón-Zygmund-type operators. J. Math. Anal. Appl. 118, 63–79 (1986)
2. Alvarez, J., Milman, M.: Vector valued inequalities for strongly singular Calderón-Zygmund operators. Rev. Mat. Iberoam. 2, 405–426 (1986)
3. Bui, T., Duong, X.: Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J. Geom. Anal. 23, 895–932 (2013)
4. Cao, Y., Zhou, J.: Morrey spaces for nonhomogeneous metric measure spaces. Abstr. Appl. Anal. 2013, Article ID 196459 (2013)
5. Chen, J., Lin, H.: Maximal multilinear commutators on non-homogeneous metric measure spaces. Taiwan. J. Math. 21, 1133–1160 (2017)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献