Author:
Ni Jinbo,Chen Gang,Dong Hudie
Abstract
AbstractIn this study, a new definition of the fractional integral operator is first proposed, which generalizes some well-known fractional integral operators. Then, by using this newly generalized fractional integral operator, we proved several new Hermite-Hadamard-type inequalities for convex functions. Finally, we provided some corollaries to show that the current results extend and enrich the previous results in the literature.
Funder
National Natural Science Foundation of China
the Key Program of University Natural Science Research Fund of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference30 articles.
1. Peajcariaac, J.E., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, San Diego (1992)
2. Hadamard, J.: Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–216 (1893)
3. Dragomir, S.S.: Hermite-Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218(3), 766–772 (2011)
4. Wang, J.R., Zhu, C., Zhou, Y.: New generalized Hermite-Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013(1), 325 (2013)
5. Awan, M.U., Noor, M.A., Safdar, F., et al.: Hermite-Hadamard type inequalities with applications. Miskolc Math. Notes 21(2), 593–614 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献