Author:
Nigam H. K.,Mohapatra R. N.,Murari K.
Abstract
AbstractIn this paper, we estimate the best wavelet approximations of a function f having bounded second derivatives and bounded higher-order derivatives using Chebyshev wavelets of third and fourth kinds.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference13 articles.
1. Debnath, L.: Wavelet Transforms and Their Applications. Birkhäuser, Boston (2002)
2. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)
3. Gautschi, W., Notaris, S.E.: Gauss–Kronrod quadrature formulae for weight function of Bernstein–Szegö type. J. Comput. Appl. Math. 25, 199–224 (1989)
4. Lal, S., Kumar, S.: Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai J. Math. 15(2), 409–419 (2017)
5. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall, New York (2003)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献