Abstract
Abstract
The main aim of this article is to discuss the uniqueness of meromorphic functions partially sharing some values and small functions in a k-punctured complex plane Ω. We proved the following: Let $f_{1},f_{2}$f1,f2 be two admissible meromorphic functions in Ω and $\alpha _{j}\ (j=1,2,\ldots ,l)$αj(j=1,2,…,l) be $l(\geq 5)$l(≥5) distinct small functions with respect to f and g. If $\widetilde{E}(\alpha _{j},\varOmega ,f_{1})\subseteq \widetilde{E}(\alpha _{j},\varOmega , f_{2})\ (j=1,2,\ldots ,l)$E˜(αj,Ω,f1)⊆E˜(αj,Ω,f2)(j=1,2,…,l) and
$$ \liminf_{r\rightarrow +\infty }\frac{\sum_{j=1}^{l}\overline{N} _{0} (r,\frac{1}{f_{1}-\alpha _{j}} )}{\sum_{j=1} ^{l}\overline{N}_{0} (r,\frac{1}{f_{2}-\alpha _{j}} )}> \frac{5}{2l-5}, $$lim infr→+∞∑j=1lN‾0(r,1f1−αj)∑j=1lN‾0(r,1f2−αj)>52l−5, then $f_{1}\equiv f_{2}$f1≡f2. Our results are some improvements and extension of previous theorems given by Cao–Yi and Ge–Wu.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference35 articles.
1. Hayman, W.K.: Meromorphic Functions. The Clarendon Press, Oxford (1964)
2. Yang, L.: Value Distribution Theory. Springer, Berlin (1993)
3. Yi, H.Y.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic, Dordrecht (2003)
4. Nevanlinna, R.: Le Théorème de Picard–Borel et la Théorie des Fonctions Méromorphes. Reprinting of the 1929 Original. Chelsea, New York (1974)
5. Chang, X.K., Liu, S.Y., Zhao, P.J., Li, X.: Convergent prediction-correction-based ADMM for multiblock separable convex programming. J. Comput. Appl. Math. 355, 270–288 (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献