Abstract
AbstractIn this paper, we present Padé approximations of some functions involving complete elliptic integrals of the first kind $K(x)$
K
(
x
)
, and motivated by these approximations we also present the following double inequality:
$$ \frac{1-x^{2}}{1-x^{2}+\frac{x^{4}}{62}}< \frac{2 e^{\frac{2}{\pi }K(x)-1}}{ (1+\frac{1}{\sqrt{1-x^{2}}} )}< \frac{1-\frac{96}{100}x^{2}}{1-\frac{96}{100}x^{2}+\frac{x^{4}}{64}},\quad x\in ( 0,1 ). $$
1
−
x
2
1
−
x
2
+
x
4
62
<
2
e
2
π
K
(
x
)
−
1
(
1
+
1
1
−
x
2
)
<
1
−
96
100
x
2
1
−
96
100
x
2
+
x
4
64
,
x
∈
(
0
,
1
)
.
Our results have superiority over some new recent results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis