Author:
Sabir Pishtiwan Othman,Agarwal Ravi P.,Mohammedfaeq Shabaz Jalil,Mohammed Pshtiwan Othman,Chorfi Nejmeddine,Abdeljawad Thabet
Abstract
AbstractMaking use of the Hankel determinant and the Ruscheweyh derivative, in this work, we consider a general subclass of m-fold symmetric normalized biunivalent functions defined in the open unit disk. Moreover, we investigate the bounds for the second Hankel determinant of this class and some consequences of the results are presented. In addition, to demonstrate the accuracy on some functions and conditions, most general programs are written in Python V.3.8.8 (2021).
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Alimohammadia, D., Cho, N.E., Adegani, E.A.: Coefficient bounds for subclasses of analytic and bi-univalent functions. Filomat 34(14), 4709–4721 (2020)
2. Altinkaya, S., Yalçin, S.: Second Hankel determinant for a general subclass of bi-univalent functions associated with the Ruscheweyh derivative. Acta Univ. Apulensis 43, 199–208 (2014)
3. Altinkaya, S., Yalçin, S.: Hankel determinant for m-fold symmetric bi-univalent functions. Creative Math. Inform. 28(1), 1–8 (2019)
4. Amourah, A.A.: Faber polynomial coefficient estimates for a class of analytic bi-univalent functions. AIP Conf. Proc. 2096(1), 020024 (2019)
5. Atshan, W.G., Al-Sajjad, R.A., Altinkaya, S.: On the Hankel determinant of m-fold symmetric bi-univalent functions using a new operator. Gazi Univ. J. Sci. 36(1), 349–360 (2023)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献