Abstract
AbstractWe consider a class of Caputo fractionalp-Laplacian differential equations with integral boundary conditions which involve two parameters. By using the Avery–Peterson fixed point theorem, we obtain the existence of positive solutions for the boundary value problem. As an application, we present an example to illustrate our main result.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference27 articles.
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)
2. Lectures Notes in Mathematics;K. Diethelm,2010
3. Bai, Z., Zhang, Y.: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 218(5), 1719–1725 (2011)
4. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
5. Jia, M., Liu, X.: Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 232, 313–323 (2014)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献