Abstract
AbstractIn this article, we are interested in some well-known dynamic inequalities on time scales. For this reason, we will prove some new Hermite–Hadamard (H-H) and Opial dynamic inequalities on time scales. The main results here will be derived via the dynamic integration by parts and chain rule formulas on time scales. In addition, we will extend and unify the inequalities for the convex functions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference31 articles.
1. Hadamard, J.: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)
2. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
3. Srivastava, H.M., Zhang, Z.-H., Wu, Y.-D.: Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 54, 2709–2717 (2011)
4. Han, J., Mohammed, P.O., Zeng, H.: Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 18, 794–806 (2020)
5. Kashuri, A., Meftah, B., Mohammed, P.O.: Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. Nonlinear Sys. 1, 75–94 (2021)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献