An improvement of convergence rate in the local limit theorem for integral-valued random variables

Author:

Siripraparat Tatpon,Neammanee Kritsana

Abstract

AbstractLet $X_{1}, X_{2}, \ldots , X_{n}$ X 1 , X 2 , , X n be independent integral-valued random variables, and let $S_{n}=\sum_{j=1}^{n}X_{j}$ S n = j = 1 n X j . One of the interesting probabilities is the probability at a particular point, i.e., the density of $S_{n}$ S n . The theorem that gives the estimation of this probability is called the local limit theorem. This theorem can be useful in finance, biology, etc. Petrov (Sums of Independent Random Variables, 1975) gave the rate $O (\frac{1}{n} )$ O ( 1 n ) of the local limit theorem with finite third moment condition. Most of the bounds of convergence are usually defined with the symbol O. Giuliano Antonini and Weber (Bernoulli 23(4B):3268–3310, 2017) were the first who gave the explicit constant C of error bound $\frac{C}{\sqrt{n}}$ C n . In this paper, we improve the convergence rate and constants of error bounds in local limit theorem for $S_{n}$ S n . Our constants are less complicated than before, and thus easy to use.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference22 articles.

1. Petrov, V.V.: Sums of Independent Random Variables. Springer, New York (1975). Translated from the Russian by A.A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82

2. Giuliano Antonini, R., Weber, M.: Approximate local limit theorems with effective rate and application to random walks in random scenery. Bernoulli 23(4B), 3268–3310 (2017)

3. Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variables. Transl. Am. Math. Soc. 49, 122–136 (1941)

4. Esseen, C.G.: On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. 28A, 1–19 (1942)

5. Shevtsova, I.G.: An improvement of convergence rate estimates in the Lyapunov theorem. Dokl. Math. 82(3), 862–864 (2010)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A nonuniform local limit theorem for Poisson binomial random variables via Stein’s method;Journal of Inequalities and Applications;2024-01-24

2. Local limit theorems for collective risk models;Statistics & Probability Letters;2023-10

3. The local limit theorem for general weighted sums of Bernoulli random variables;Communications in Statistics - Theory and Methods;2023-04-08

4. Local limit theorems without assuming finite third moment;Journal of Inequalities and Applications;2023-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3