Author:
Kim Taekyun,Kim Dae San,Kwon Jongkyum,Lee Hyunseok
Abstract
AbstractAs is well known, poly-Bernoulli polynomials are defined in terms of polylogarithm functions. Recently, as degenerate versions of such functions and polynomials, degenerate polylogarithm functions were introduced and degenerate poly-Bernoulli polynomials were defined by means of the degenerate polylogarithm functions, and some of their properties were investigated. The aim of this paper is to further study some properties of the degenerate poly-Bernoulli polynomials by using three formulas coming from the recently developed ‘λ-umbral calculus’. In more detail, among other things, we represent the degenerate poly-Bernoulli polynomials by higher-order degenerate Bernoulli polynomials and by higher-order degenerate derangement polynomials.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference27 articles.
1. Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65(1), 15–24 (2011)
2. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)
3. Dere, R., Simsek, Y.: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 433–438 (2012)
4. Dere, R., Simsek, Y.: Hermite base Bernoulli type polynomials on the umbral algebra. Russ. J. Math. Phys. 22(1), 1–5 (2015)
5. Dere, R., Simsek, Y., Srivastava, H.M.: A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra. J. Number Theory 133, 3245–3263 (2013)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献