Author:
Boulaaras Salah,Bencheikh Le Hocine Mohamed El Amine,Haiour Mohamed
Abstract
AbstractThis paper deals with the numerical analysis of parabolic variational inequalities with nonlinear source terms, where the existence and uniqueness of the solution is provided by using Banach’s fixed point theorem. In addition, an optimally $L^{\infty}$L∞-asymptotic behavior is proved using Euler time scheme combined with the finite element spatial approximation. The approach is based on Bensoussan–Lions algorithm for evolutionary free boundary problems using the concepts of subsolutions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference23 articles.
1. Achdou, A., Hecht, F., Pommier, D.: A posteriori error estimates for parabolic variational inequalities. J. Sci. Comput. Math. Appl. 37(3), 336–366 (2008)
2. Bencheikh Le Hocine, M.A., Boulaaras, S., Haiuor, M.: An optimal $L^{\infty}$-error estimate for an approximation of a parabolic variational inequality. Numer. Funct. Anal. Optim. 37(1), 1–18 (2016)
3. Benssoussan, A., Lions, J.L.: Applications des inéquations variationnelles en contrôle stochastique. Dunod, Paris (1978)
4. Berger, A., Falk, R.: An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities. Math. Comput. 31(139), 619–628 (1977)
5. Boulaaras, S.: An optimal error estimate of finite element method for parabolic quasi-variational inequalities with nonlinear source terms. Asymptot. Anal. 100(3–4), 193–208 (2016)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献