Author:
Erden Samet,Budak Hüseyin,Zeki Sarikaya Mehmet,Iftikhar Sabah,Kumam Poom
Abstract
AbstractWe first establish some results involving Riemann–Liouville fractional integrals for partially differentiable functions. Then we obtain some fractional Ostrowski type inequalities for functions in class of functions $L_{p}$Lp, $L_{\infty }$L∞ and $L_{1}$L1, respectively. We also give some midpoint type inequalities as special cases of our main results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference22 articles.
1. Ostrowski, A.: Über die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert. Comment. Math. Helv. 10, 226–227 (1937)
2. North-Holland Mathematics Studies;A.A. Kilbas,2006
3. Sarıkaya, M.Z.: On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25(2), 134–147 (2014)
4. Latif, M.A., Dragomir, S., Matouk, A.: New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals. J. Fract. Calc. Appl. 2(1), 1–15 (2012)
5. Aglić Aljinović, A.: Montgomery identity and Ostrowski type inequalities for Riemann–Liouville fractional integral. J. Math. 2014 Article ID 503195 (2014)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献