Abstract
AbstractFor $1\le p<\infty $
1
≤
p
<
∞
, let $A^{p}_{\omega }$
A
ω
p
be the weighted Bergman space associated with an exponential type weight ω satisfying
$$ \int _{{\mathbb{D}}} \bigl\vert K_{z}(\xi ) \bigr\vert \omega (\xi )^{1/2} \,dA(\xi ) \le C \omega (z)^{-1/2}, \quad z\in {\mathbb{D}}, $$
∫
D
|
K
z
(
ξ
)
|
ω
(
ξ
)
1
/
2
d
A
(
ξ
)
≤
C
ω
(
z
)
−
1
/
2
,
z
∈
D
,
where $K_{z}$
K
z
is the reproducing kernel of $A^{2}_{\omega }$
A
ω
2
. This condition allows us to obtain some interesting reproducing kernel estimates and more estimates on the solutions of the ∂̅-equation (Theorem 2.5) for more general weight $\omega _{*}$
ω
∗
. As an application, we prove the boundedness of the Bergman projection on $L^{p}_{\omega }$
L
ω
p
, identify the dual space of $A^{p}_{\omega }$
A
ω
p
, and establish an atomic decomposition for it. Further, we give necessary and sufficient conditions for the boundedness and compactness of some operators acting from $A^{p}_{\omega }$
A
ω
p
into $A^{q}_{\omega }$
A
ω
q
, $1\le p,q<\infty $
1
≤
p
,
q
<
∞
, such as Toeplitz and (big) Hankel operators.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference38 articles.
1. Arazy, J., Fisher, S., Janson, S., Peetre, J.: Membership of Hankel operators on the ball in unitary ideals. J. Lond. Math. Soc. 43, 485–508 (1991)
2. Arazy, J., Fisher, S., Peetre, J.: Hankel operators on weighted Bergman spaces. Am. J. Math. 110, 989–1054 (1988)
3. Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces. Stud. Math. 229, 203–221 (2015)
4. Borichev, A., Dhuez, R., Kellay, K.: Sampling and interpolation in large Bergman and Fock spaces. J. Funct. Anal. 242, 563–606 (2007)
5. Cho, H.R., Han, S.K.: Exponentially weighted $L^{p}$-estimates for ∂̅ on the unit disc. J. Math. Anal. Appl. 404, 129–134 (2013)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献