Abstract
AbstractConsider the heteroscedastic semiparametric regression model $y_{i}=x_{i}\beta+g(t_{i})+\varepsilon_{i}$yi=xiβ+g(ti)+εi, $i=1, 2, \ldots, n$i=1,2,…,n, where β is an unknown slope parameter, $\varepsilon_{i}=\sigma_{i}e_{i}$εi=σiei, $\sigma^{2}_{i}=f(u_{i})$σi2=f(ui), $(x_{i},t_{i},u_{i})$(xi,ti,ui) are nonrandom design points, $y_{i}$yi are the response variables, f and g are unknown functions defined on the closed interval $[0,1]$[0,1], random errors $\{e_{i} \}${ei} are negatively associated (NA) random variables with zero means. Whereas kernel estimators of β, g, and f have attracted a lot of attention in the literature, in this paper, we investigate their wavelet estimators and derive the strong consistency of these estimators under NA error assumption. At the same time, we also obtain the Berry–Esséen type bounds of the wavelet estimators of β and g.
Funder
the NNSF of China
Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference29 articles.
1. Engle, R., Granger, C., Rice, J., Weiss, A.: Semiparametric estimates of the relation between weather and electricity sales. J. Am. Stat. Assoc. 81, 310–320 (1986)
2. Gao, J.T., Chen, X.R., Zhao, L.C.: Asymptotic normality of a class of estimators in partial linear models. Acta Math. Sin. 37(2), 256–268 (1994)
3. Chen, M.H., Ren, Z., Hu, S.H.: Strong consistency of a class of estimators in partial linear model. Acta Math. Sin. 41(2), 429–439 (1998)
4. Hamilton, S.A., Truong, Y.K.: Local linear estimation in partly linear models. J. Multivar. Anal. 60, 1–19 (1997)
5. Härdle, W., Liang, H.Y., Gao, J.L.: Partial Linear Models. Physica-Verlag, Heidelberg (2000)