Abstract
AbstractIn the present paper, Stancu type generalizations of the q-analog of Lupaş Bernstein operators with shifted knots are introduced. Some approximation results and rate of convergence for these operators are investigated. A Voronovskaja type theorem and local approximation results for the mentioned operators are studied. The extra parameters γ, δ, q, a and b provide more flexibility for approximation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. Acar, T.: Quantitative q-Voronovskaya, q-Grüss–Voronovskaya-type results for q-Szasz operators. Georgian Math. J. 23(4), 459–468 (2016)
2. Acar, T., Aral, A., Gupta, V.: On approximation properties of a new type Bernstein–Durrmeyer operators. Math. Slovaca 65(5), 1107–1122 (2015)
3. De Gruyter Studies in Mathematics;F. Altomare,1994
4. Aral, A., Acar, T.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev operators. Filomat 27(2), 373–382 (2013)
5. Bernstein, S.N.: Démonstation du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13, 1–2 (1912–1913)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献