A characterization of nonhomogeneous wavelet bi-frames for reducing subspaces of Sobolev spaces

Author:

Jia Hui-Fang,Zhang Jianping

Abstract

AbstractFor nonhomogeneous wavelet bi-frames in a pair of dual spaces $(H^{s}(\mathbb{R}^{d}), H^{-s}(\mathbb{R}^{d}))$ ( H s ( R d ) , H s ( R d ) ) with $s\neq 0$ s 0 , smoothness and vanishing moment requirements are separated from each other, that is, one system is for smoothness and the other one for vanishing moments. This gives us more flexibility to construct nonhomogeneous wavelet bi-frames than in $L^{2}(\mathbb{R}^{d})$ L 2 ( R d ) . In this paper, we introduce the reducing subspaces of Sobolev spaces, and characterize the nonhomogeneous wavelet bi-frames under the setting of a general pair of dual reducing subspaces of Sobolev spaces.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonhomogeneous Wavelet Bi-frames for Reducing Subspaces of $$H^s(K)$$ and their Characterization;Indian Journal of Pure and Applied Mathematics;2024-06-18

2. On Some Novel Methods for Solving the Generalized Fermat–Torricelli Problem in Hilbert Spaces;Results in Mathematics;2023-10-21

3. On the nonhomogeneous wavelet bi-frames for reducing subspaces of Hs(K);Annals of the University of Craiova - Mathematics and Computer Science Series;2022-12-24

4. A Class of Weak Dual Wavelet Frames for Reducing Subspaces of Sobolev Spaces;Journal of Function Spaces;2022-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3