Abstract
AbstractIn this article, we introduce two new types of generalized contraction mappings in double controlled metric type spaces: Θ-double controlled contraction mapping and Ćirić-Reich-Rus-type-Θ-double controlled contraction mapping. For each contraction mapping, we establish the existence and uniqueness of the fixed point theorems on the complete double controlled metric type space and provide examples. We present an application of our results and demonstrate how our results generalize several existing fixed point theorems in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference35 articles.
1. Banach, S.: Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 3, 133–181 (1922)
2. Bakhtin, A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, 26–37 (1989)
3. Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 57(1–2), 31–37 (2000)
4. Abodayeh, K., Karapınar, E., Pitea, A., Shatanawi, W.: Hybrid contractions on Branciari type distance spaces. Mathematics 7, 994 (2019). https://doi.org/10.3390/math7100994
5. Karapinar, E., Zhang, D.: Properties and principles in Branciari distance space. J. Fixed Point Theory Appl. 21, 72 (2019). https://doi.org/10.1007/s11784-019-0710-2
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献