Abstract
AbstractThe design of optimal Magnetic Resonance Imaging (MRI) coils is modeled as a minimum-norm problem (MNP), that is, as an optimization problem of the form $\min_{x\in\mathcal{R}}\|x\|$
min
x
∈
R
∥
x
∥
, where $\mathcal{R}$
R
is a closed and convex subset of a normed space X. This manuscript is aimed at revisiting MNPs from the perspective of Functional Analysis, Operator Theory, and Banach Space Geometry in order to provide an analytic solution to the following MRI problem: $\min_{\psi\in\mathcal{R}}\|\psi\|_{2}$
min
ψ
∈
R
∥
ψ
∥
2
, where $\mathcal{R}:=\{\psi\in \mathbb{R}^{n}:\frac{\|A\psi-b\|_{\infty}}{\|b\|_{\infty}} \leq D\}$
R
:
=
{
ψ
∈
R
n
:
∥
A
ψ
−
b
∥
∞
∥
b
∥
∞
≤
D
}
, with $A\in\mathcal{M}_{m\times n}(\mathbb{R})$
A
∈
M
m
×
n
(
R
)
, $D>0$
D
>
0
, and $b\in\mathbb{R}^{m}\setminus\{0\}$
b
∈
R
m
∖
{
0
}
.
Funder
Ministerio de Ciencia, Innovación y Universidades
Agencia de Innovación y Desarrollo de Andalucía
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. Aizpuru, A., García-Pacheco, F.J.: A short note about exposed points in real Banach spaces. Acta Math. Sci. Ser. B Engl. Ed. 28(4), 797–800 (2008)
2. Bishop, E., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 97–98 (1961)
3. Bishop, E., Phelps, R.R.: The support functionals of a convex set. In: Proc. Sympos. Pure Math., vol. VII, pp. 27–35. Am. Math. Soc., Providence (1963)
4. Bourbaki, N.: Elements of Mathematics. Topological Vector Spaces. Chapters 1–5, p. viii+364. Springer, Berlin (1987)
5. Cobos Sanchez, C., et al.: Forward electric field calculation using BEM for time-varying magnetic field gradients and motion in strong static fields. Eng. Anal. Bound. Elem. 33(8–9), 1074–1088 (2009)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献