Approximating fixed points of weak enriched contractions using Kirk’s iteration scheme of higher order

Author:

Zhou Mi,Saleem Naeem,Abbas Mujahid

Abstract

AbstractIn this paper, we introduce two types of weak enriched contractions, namely weak enriched $\mathcal{F}$ F -contraction, weak enriched $\mathcal{F^{\prime}}$ F -contraction, and k-fold averaged mapping based on Kirk’s iterative algorithm of order k. The types of contractions introduced herein unify, extend, and generalize several existing classes of enriched and weak enriched contraction mappings. Moreover, K-fold averaged mappings can be viewed as a generalization of the averaged mappings and double averaged mappings. We then prove the existence of a unique fixed point of the k-fold averaged mapping associated with weak enriched contractions introduced herein. We study necessary conditions that guarantee the equality of the sets of fixed points of the k-fold averaged mapping and weak enriched contractions. We show that an appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a k-fold averaged mapping and of the two weak enriched contractions. We also study the well-posedness, limit shadowing property, and Ulam–Hyers stability of the k-fold averaged mapping. We provide necessary conditions that ensure the periodic point property of each illustrated weak enriched contraction. Some examples are presented to show that our results are a potential generalization of the comparable results in the existing literature.

Funder

Key Research and Development Project of Hainan Province

High Level Project of Hainan Provincial Natural Science Foundation

Key Special Project of University of Sanya

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3(1), 133–181 (1922)

2. Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4(1), 1–9 (1978)

3. Krasnoselskii, M.A.: Two remarks about the method of successive approximations. Usp. Mat. Nauk 10(1), 123–127 (1955)

4. Schaefer, H.: Über die Methode suksessiver Approximation. Jahresber. Dtsch. Math.-Ver. 59, 131–140 (1957)

5. Edelstein, M.: A remark on a theorem of M.A. Krasnoselskii. Am. Math. Mon. 73, 509–510 (1966)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3