Author:
Sahir Muhammad Jibril Shahab,Afzal Deeba,Inc Mustafa,Alshomrani Ali Saleh
Abstract
AbstractIn this research article, we prove several generalizations of reverse Callebaut, Rogers–Hölder, and Cauchy–Schwarz inequalities via reverses of Young inequalities on time scales. Discrete, continuous, and quantum versions of the results are unified and extended on time scales.
Funder
King Abdulaziz University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference14 articles.
1. Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
2. Akin, L.: On innovations of n-dimensional integral-type inequality on time scales. Adv. Differ. Equ. 2021, 148 (2021)
3. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser Boston, Boston (2001)
4. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
5. Dragomir, S.S.: Some results for isotonic functionals via an inequality due to Tominaga. Mem. Grad. Sci. Eng. Shimane Univ. Ser. B: Math. 50, 31–41 (2017)