Abstract
AbstractThis study introduces extended Branciari quasi-b-distance spaces, a novel implicit contractive condition in the underlying space, and basic fixed-point results, a weak well-posed property, a weak limit shadowing property and generalized Ulam–Hyers stability. The given notions and results are exemplified by suitable models. We apply these results to obtain a sufficient condition ensuring the existence of a unique positive-definite solution of a nonlinear matrix equation (NME) $\mathcal{X}=\mathcal{Q} + \sum_{i=1}^{k}\mathcal{A}_{i}^{*} \mathcal{G(X)}\mathcal{A}_{i}$
X
=
Q
+
∑
i
=
1
k
A
i
∗
G
(
X
)
A
i
, where $\mathcal{Q}$
Q
is an $n\times n$
n
×
n
Hermitian positive-definite matrix, $\mathcal{A}_{1}$
A
1
, $\mathcal{A}_{2}$
A
2
, …, $\mathcal{A}_{m}$
A
m
are $n \times n$
n
×
n
matrices, and $\mathcal{G}$
G
is a nonlinear self-mapping of the set of all Hermitian matrices that are continuous in the trace norm. We demonstrate this sufficient condition for the NME $\mathcal{X}= \mathcal{Q} +\mathcal{A}_{1}^{*}\mathcal{X}^{1/3} \mathcal{A}_{1}+\mathcal{A}_{2}^{*}\mathcal{X}^{1/3} \mathcal{A}_{2}+ \mathcal{A}_{3}^{*}\mathcal{X}^{1/3}\mathcal{A}_{3}$
X
=
Q
+
A
1
∗
X
1
/
3
A
1
+
A
2
∗
X
1
/
3
A
2
+
A
3
∗
X
1
/
3
A
3
, and visualize this through convergence analysis and a solution graph.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. Abdeljawad, T., Karapinar, E., Panda, S.K., Mlaiki, N.: Solutions of boundary value problems on extended-Branciari b-distance. J. Inequal. Appl. 2020, 103 (2020)
2. Aliouche, A., Djoudi, A.: Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption. Hacet. J. Math. Stat. 36(1), 11–18 (2007)
3. Bakhtin, I.A.: The contraction mapping principle in quasi metric spaces. Funkc. Anal. Ulianowsk Gos. Ped. Inst. 30, 243–253 (1999)
4. Branciari, A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29(9), 531–536 (2002)
5. Chen, L., Huang, S., Li, C., Zhao, Y.: Several fixed-point theorems for F-contractions in complete Branciari b-metrics, and applications. J. Funct. Spaces 2020, 7963242 (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献