Author:
Zhang Qian,Xu Bing,Han Maoan
Abstract
AbstractIn this paper, we present the best possible parameters $\alpha (r)$α(r), $\beta (r)$β(r) such that the double inequality $$\begin{aligned} {}[\alpha (r)M^{r}(a,b)+(1-\alpha (r))N^{r}(a,b)] ^{1/r} < &\operatorname{TD}\bigl[M(a,b),N(a,b)\bigr] \\ < &\bigl[\beta (r)M^{r}(a,b)+\bigl(1-\beta (r)\bigr)N^{r}(a,b) \bigr]^{1/r}, \end{aligned}$$ [α(r)Mr(a,b)+(1−α(r))Nr(a,b)]1/r<TD[M(a,b),N(a,b)]<[β(r)Mr(a,b)+(1−β(r))Nr(a,b)]1/r, holds for all $r\leq 1$r≤1 and $a,b>0$a,b>0 with $a\neq b$a≠b, where $$ \operatorname{TD}(a,b):= \int ^{\pi /2}_{0}\sqrt{a^{2}\cos ^{2}\theta +b^{2}\sin ^{2} \theta }\,d\theta $$TD(a,b):=∫0π/2a2cos2θ+b2sin2θdθ is the Toader mean, and M, N are means. As applications, we attain the optimal bounds for the Toader mean in terms of arithmetic, contraharmonic, centroidal and quadratic means, and then we provide some new bounds for the complete elliptic integral of the second kind.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference24 articles.
1. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987)
2. Haruki, H.: New characterizations of the arithmetic–geometric mean of Gauss and other well-known mean values. Publ. Math. (Debr.) 38, 323–332 (1991)
3. Toader, G.: Some mean values related to the arithmetic–geometric mean. J. Math. Anal. Appl. 218(2), 358–368 (1998)
4. Seiffert, H.: Problem 887. Nieuw Arch. Wiskd. 11(2), 176 (1993)
5. Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Special Functions and Differential Equations, Madras, 1997, pp. 119–126. Allied Publ., New Delhi (1998)