Author:
Huang Hao,Wu Zheng,Su Xiaofeng
Abstract
AbstractWe consider the approximate controllability for a class of second-order impulsive neutral stochastic differential equations with state-dependent delay and Poisson jumps in a real separable Hilbert space. Under the sufficient conditions, we obtain approximate controllability results by virtue of the theory of a strongly continuous cosine family of bounded linear operators combined with stochastic inequality technique and the Sadovskii fixed point theorem. Finally, we illustrate the main results by an example.
Funder
The Key Natural Science Research Project of Universities of Anhui Province
The Support Program for Outstanding Young Talents of Universities in Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference51 articles.
1. Zabczyk, J.: Mathematical Control Theory. Birkhäuser, Basel (1992)
2. Astrom, K.J.: Introduction to Stochastic Control Theory. Academic Press, New York (1970)
3. Bashirov, A.E., Mahmudov, N.I.: On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 37, 1808–1821 (1999)
4. Anandhi, E.R., Voit, E.O.: Controllability of non-linear biochemical systems. Math. Biosci. 196, 99–123 (2005)
5. Mokkedem, F.Z., Fu, X.: Approximate controllability of semi-linear neutral integro-differential systems with finite delay. Appl. Math. Comput. 242, 202–215 (2014)