Author:
Han Xue-Feng,Chen Chao-Ping
Abstract
AbstractLet$\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1)$Ωn=πn/2/Γ(n2+1)($n \in \mathbb{N}$n∈N) denote the volume of the unit ball in$\mathbb{R}^{n}$Rn. In this paper, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions is presented, which yields a sharp double inequality for the quantity$\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$Ωn2/(Ωn−1Ωn+1). Also, we establish new sharp inequalities for the quantity$\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$Ωn2/(Ωn−1Ωn+1).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference39 articles.
1. Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung. Birkhäuser, Basel (1981)
2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Special functions of quasiconformal theory. Expo. Math. 7, 97–136 (1989)
3. Anderson, G.D., Qiu, S.-L.: A monotoneity property of the gamma function. Proc. Am. Math. Soc. 125, 3355–3362 (1997)
4. Guo, B.-N., Qi, F.: Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optim. Lett. 7, 1139–1153 (2013)
5. Klain, D.A., Rota, G.-C.: A continuous analogue of Sperner’s theorem. Commun. Pure Appl. Math. 50, 205–223 (1997)