Abstract
AbstractLet $(\mathcal{X}, d, \mu )$
(
X
,
d
,
μ
)
be a non-homogeneous metric measure space, which satisfies the geometrically doubling condition and the upper doubling condition. In this paper, the authors prove the boundedness in $L^{p} (\mu )$
L
p
(
μ
)
of mth-order commutators $\mathcal{M}^{\rho }_{b,m}$
M
b
,
m
ρ
generated by the Log-Dini-type parametric Marcinkiewicz integral operators with RBMO functions on $(\mathcal{X}, d, \mu )$
(
X
,
d
,
μ
)
. In addition, the boundedness of the mth-order commutators $\mathcal{M}^{\rho }_{b,m}$
M
b
,
m
ρ
on Morrey spaces $M^{q}_{p}(\mu )$
M
p
q
(
μ
)
, $1< p \leq q< \infty $
1
<
p
≤
q
<
∞
, is also obtained for the parameter $0<\rho <\infty $
0
<
ρ
<
∞
.
Funder
National Natural Science Foundation of China
Zhejiang University of Science and Technology graduate research innovation fund.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference31 articles.
1. Hörmander, L.: Estimates for translation invariant operators in Lp spaces. Math. Res. Lett. 104, 93–104 (1960)
2. Fan, D.S., Sato, S.C.: Weak type $(1,1)$ estimates for Marcinkiewicz integrals with rough kernels. Tohoku Math. J. 53, 265–284 (2001)
3. Stein, E.M.: On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)
4. Torchinsky, A., Wang, S.L.: A note on the Marcinkiewicz integral. Colloq. Math. 60, 235–243 (1990)
5. Al-Salman, A., Al-Qassem, C.L.C.H., Pan, Y.: $\mathrm{L}^{p}$ bounds for the function of Marcinkiewicz. Math. Res. Lett. 9, 697–700 (2002)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献