Author:
Bohner Martin,Nguyen Linh,Schneider Baruch,Truong Tri
Abstract
AbstractWe propose the concept of Riemann diamond-alpha integrals for time scales interval-valued functions. We first give the definition and some properties of the interval Riemann diamond-alpha integral that are naturally investigated as an extension of interval Riemann nabla and delta integrals. With the help of the interval Riemann diamond-alpha integral, we present interval variants of Jensen inequalities for convex and concave interval-valued functions on an arbitrary time scale. Moreover, diamond-alpha Hölder’s and Minkowski’s interval inequalities are proved. Also, several numerical examples are provided in order to illustrate our main results.
Funder
Ostravská Univerzita v Ostravě
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference38 articles.
1. Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
2. Agarwal, R.P., O’Regan, D., Saker, S.H.: Hardy Type Inequalities on Time Scales. Springer, Cham (2016)
3. Ammi, M.R.S., Ferreira, R.A.C., Torres, D.F.M.: Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl. 2008, 1 (2008)
4. Ammi, M.R.S., Torres, D.F.M.: Hölder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales. An. Univ. Craiova, Ser. Mat. Inform. 37(1), 1–11 (2010)
5. Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43(7–8), 718–726 (2006)