Abstract
AbstractIn this paper, we study variational discretization method for parabolic optimization problems. Firstly, we obtain some convergence and superconvergence analysis results of the approximation scheme. Secondly, we derive a posteriori error estimates of the approximation solutions. Finally, we present variational discretization approximation algorithm and adaptive variational discretization approximation algorithm for parabolic optimization problems and do some numerical experiments to confirm our theoretical results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference35 articles.
1. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
2. Babuvška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 44(4), 75–102 (1978)
3. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)
4. Chen, Y., Dai, Y.: Superconvergence for optimal control problems governed by semi-linear elliptic equations. J. Sci. Comput. 39, 206–221 (2009)
5. Chen, Y., Huang, Y., Liu, W., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42(3), 382–403 (2010)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献