Abstract
AbstractLet $\mathcal {A} \subset{\mathcal {B}}(\mathcal {H})$
A
⊂
B
(
H
)
be a row contraction and $\Phi _{\mathcal {A}}$
Φ
A
determined by $\mathcal {A}$
A
be a completely positive map on ${\mathcal {B}}(\mathcal {H})$
B
(
H
)
. In this paper, we mainly consider fixed points of $\Phi _{\mathcal {A}}$
Φ
A
and its dual map $\Phi _{\mathcal {A}}^{\dagger}$
Φ
A
†
. It is given that $\Phi _{\mathcal {A}}(X)\leq X $
Φ
A
(
X
)
≤
X
(or $\Phi _{\mathcal {A}}(X)\geq X $
Φ
A
(
X
)
≥
X
) implies $\Phi _{\mathcal {A}}(X)= X$
Φ
A
(
X
)
=
X
and $\Phi _{\mathcal {A}}^{\dagger}(X)= X$
Φ
A
†
(
X
)
=
X
when $X\in {\mathcal {B}}(\mathcal {H})$
X
∈
B
(
H
)
is a compact operator. Some necessary conditions of $\Phi _{\mathcal {A}}(X)= X$
Φ
A
(
X
)
=
X
and $\Phi _{\mathcal {A}}^{\dagger}(X)= X$
Φ
A
†
(
X
)
=
X
are given.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference11 articles.
1. Arias, A., Gheondea, A., Gudder, S.: Fixed points of quantum operations. J. Math. Phys. 43, 5872–5881 (2002)
2. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)
3. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64, 311–355 (1971)
4. Li, Y.: Fixed points of dual quantum operations. Math. Phys. Anal. Geom. 382, 172–179 (2011)
5. Li, Y.: Characterizations of fixed points of quantum operations. J. Math. Phys. 52, 052103 (2011)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献