Author:
Singh Abhay Pratap,Singh Uaday
Abstract
AbstractSingular integral operators play an important role in approximation theory and harmonic analysis. In this paper, we consider a weighted Lebesgue space $L^{p,w}$
L
p
,
w
, define a modified Gauss–Weierstrass singular integral on it, and study direct and inverse approximation properties of the operator followed by a Korovkin-type approximation theorem for a function $f\in L^{p,w}$
f
∈
L
p
,
w
. We use the modulus of continuity of the functions to measure the rate of convergence.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Agratini, O., Aral, A., Deniz, E.: On two classes of approximation process of integral type. Positivity 3(21), 1189–1199 (2017)
2. Agrawal, P.N., Goyal, M.: Generalized Baskakov Kantorovich operators. Fiolmat 31(19), 6131–6151 (2017)
3. Bardaro, C., Mantellini, I., Uysal, G., Yilmaz, B.: A class of integral operators that fix exponential functions. Mediterr. J. Math. 179(18), 1–21 (2021)
4. Bogalska, K., Gojtka, E., Gurdek, M., Rempulska, L.: The Picard and the Gauss-Weierstrass singular integrals of function of two variables. Mathematiche LII, 71–84 (1997)
5. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, vol. 1. Birkhäuser, New York (1971)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献