Abstract
Abstract
Background
Type I interferonopathies are a group of rare autoimmune diseases characterised by excessive activation of type I interferon that leads to disturbances in immune function. Three prime repair exonuclease 1 (TREX1) is an important exonuclease and plays an important role in DNA damage repair. TREX1 mutations are associated with many type I interferonopathies. Studies have been published on the effectiveness of tofacitinib in the treatment of type I interferonopathies. The aim of this study is to identify the pathogenic variation in a Chinese family with type I interferonopathies and to observe the therapeutic effects of tofacitinib.
Methods
A Chinese family with two members with type I interferonopathies was investigated. Whole exome sequencing and Sanger sequencing were applied for mutation screening using peripheral blood DNA of the patient and her family members. Sequencing results were analysed using bioinformatics software tools including VarCards and PolyPhen-2. Close clinical follow-up and observation were used to record changes in the disease before and after treatment with tofacitinib.
Results
Compound heterozygous variants of TREX1 were observed in the patient’s genome. One was a missense variant (NM_016381; c.C227T; p.Ala76Val) from the patient’s father, and the other was a frameshift variant (NM_016381; c.458dupA; p.Gln153Glnfs*3) from the patient’s mother. One of the proband’s elder brothers with similar skin lesions also carried these two variants. This brother of the proband had more serious cutaneous involvement with the comorbidity of cerebral palsy. These TREX1 variants have not been reported in previous studies and are predicted to be highly pathogenic. The proband was given tofacitinib that led to a marked improvement.
Conclusions
We identified two novel complex heterozygous variants in the TREX1 gene, which may underlie the molecular pathogenesis of the type I interferonopathies observed in members of this family. Tofacitinib could be an alternative treatment for this disease.
Funder
the Fundamental Research Funds for the Central Universities
the National Scientific Data Sharing Platform for Population and Health - Clinical Centre
the Beijing Dongcheng District Excellent Talent Support Training project
the Peking Union Medical College Postgraduate Innovation Fund
the National Key Research and Development Program of China
National Key Scientific Instrument and Equipment Development Projects of China
the National Natural Science Foundation of China
the CAMS Initiative for Medical Sciences
he National Key Research and Development Program of China Grant
the Centre for Rare Diseases Research, Chinese Academy of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Immunology and Allergy,Rheumatology,Pediatrics, Perinatology, and Child Health