Artificial intelligence for interpretation of segments of whole body MRI in CNO: pilot study comparing radiologists versus machine learning algorithm

Author:

Bhat Chandrika S.ORCID,Chopra Mark,Andronikou Savvas,Paul Suvadip,Wener-Fligner Zach,Merkoulovitch Anna,Holjar-Erlic Izidora,Menegotto Flavia,Simpson Ewan,Grier David,Ramanan Athimalaipet V.

Abstract

Abstract Background To initiate the development of a machine learning algorithm capable of comparing segments of pre and post pamidronate whole body MRI scans to assess treatment response and to compare the results of this algorithm with the analysis of a panel of paediatric radiologists. Methods Whole body MRI of patients under the age of 16 diagnosed with CNO and treated with pamidronate at a tertiary referral paediatric hospital in United Kingdom between 2005 and 2017 were reviewed. Pre and post pamidronate images of the commonest sites of involvement (distal femur and proximal tibia) were manually selected (n = 45). A machine learning algorithm was developed and tested to assess treatment effectiveness by comparing pre and post pamidronate scans. The results of this algorithm were compared with the results of a panel of radiologists (ground truth). Results When tested initially the machine algorithm predicted 4/7 (57.1%) examples correctly in the multi class model, and 5/7 (71.4%) correctly in the binary group. However when compared to the ground truth, the machine model was able to classify only 33.3% of the samples correctly but had a sensitivity of 100% in detecting improvement or worsening of disease. Conclusion The machine learning could detect new lesions or resolution of a lesion with good sensitivity but failed to classify stable disease accurately. However, further validation on larger datasets are required to improve the specificity and accuracy of the machine model.

Publisher

Springer Science and Business Media LLC

Subject

Immunology and Allergy,Rheumatology,Pediatrics, Perinatology and Child Health

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3