Establishment and analysis of a novel diagnostic model for systemic juvenile idiopathic arthritis based on machine learning

Author:

Ding Pan,Du Yi,Jiang Xinyue,Chen Huajian,Huang LiORCID

Abstract

Abstract Background Systemic juvenile idiopathic arthritis (SJIA) is a form of childhood arthritis with clinical features such as fever, lymphadenopathy, arthritis, rash, and serositis. It seriously affects the growth and development of children and has a high rate of disability and mortality. SJIA may result from genetic, infectious, or autoimmune factors since the precise source of the disease is unknown. Our study aims to develop a genetic-based diagnostic model to explore the identification of SJIA at the genetic level. Methods The gene expression dataset of peripheral blood mononuclear cell (PBMC) samples from SJIA was collected from the Gene Expression Omnibus (GEO) database. Then, three GEO datasets (GSE11907-GPL96, GSE8650-GPL96 and GSE13501) were merged and used as a training dataset, which included 125 SJIA samples and 92 health samples. GSE7753 was used as a validation dataset. The limma method was used to screen differentially expressed genes (DEGs). Feature selection was performed using Lasso, random forest (RF)-recursive feature elimination (RFE) and RF classifier. Results We finally identified 4 key genes (ALDH1A1, CEACAM1, YBX3 and SLC6A8) that were essential to distinguish SJIA from healthy samples. And we combined the 4 key genes and performed a grid search as well as 10-fold cross-validation with 5 repetitions to finally identify the RF model with optimal mtry. The mean area under the curve (AUC) value for 5-fold cross-validation was greater than 0.95. The model’s performance was then assessed once more using the validation dataset, and an AUC value of 0.990 was obtained. All of the above AUC values demonstrated the strong robustness of the SJIA diagnostic model. Conclusions We successfully developed a new SJIA diagnostic model that can be used for a novel aid in the identification of SJIA. In addition, the identification of 4 key genes that may serve as potential biomarkers for SJIA provides new insights to further understand the mechanisms of SJIA.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3