Abstract
Abstract
Background
In pediatric rheumatic diseases (PRD), adalimumab is dosed using fixed weight-based bands irrespective of methotrexate co-treatment, disease activity (DA) or other factors that might influence adalimumab pharmacokinetics (PK). In rheumatoid arthritis (RA) adalimumab exposure between 2–8 mg/L is associated with clinical response. PRD data on adalimumab is scarce. Therefore, this study aimed to analyze adalimumab PK and its variability in PRD treated with/without methotrexate.
Methods
A two-center prospective study in PRD patients aged 2–18 years treated with adalimumab and methotrexate (GA-M) or adalimumab alone (GA) for ≥ 12 weeks was performed. Adalimumab concentrations were collected 1–9 (maximum concentration; Cmax), and 10–14 days (minimum concentration; Cmin) during ≥ 12 weeks following adalimumab start. Concentrations were analyzed with enzyme-linked immunosorbent assay (lower limit of quantification: 0.5 mg/L). Log-normalized Cmin were compared between GA-M and GA using a standard t-test.
Results
Twenty-eight patients (14 per group), diagnosed with juvenile idiopathic arthritis (71.4%), non-infectious uveitis (25%) or chronic recurrent multifocal osteomyelitis (3.6%) completed the study. GA-M included more females (71.4%; GA 35.7%, p = 0.13). At first study visit, children in GA-M had a slightly longer exposure to adalimumab (17.8 months [IQR 9.6, 21.6]) compared to GA (15.8 months [IQR 8.5, 30.8], p = 0.8). Adalimumab dosing was similar between both groups (median dose 40 mg every 14 days) and observed DA was low. Children in GA-M had a 27% higher median overall exposure compared to GA, although median Cmin adalimumab values were statistically not different (p = 0.3). Cmin values ≥ 8 mg/L (upper limit RA) were more frequently observed in GA-M versus GA (79% versus 64%). Overall, a wide range of Cmin values was observed in PRD (0.5 to 26 mg/L).
Conclusion
This study revealed a high heterogeneity in adalimumab exposure in PRD. Adalimumab exposure tended to be higher with methotrexate co-treatment compared to adalimumab monotherapy although differences were not statistically significant. Most children showed adalimumab exposure exceeding those reported for RA with clinical response, particularly with methotrexate co-treatment. This highlights the need of further investigations to establish model-based personalized treatment strategies in PRD to avoid under- and overexposure.
Trial registration
NCT04042792, registered 02.08.2019.
Funder
Eckenstein-Geigy Foundation
University of Basel
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. d’Angelo DM, Di Donato G, Breda L, Chiarelli F. Growth and puberty in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2021;19(1):28.
2. Moorthy LN, Peterson MG, Hassett AL, Lehman TJ. Burden of childhood-onset arthritis. Pediatr Rheumatol Online J. 2010;8:20.
3. Oen K, Tian J, Loughin TM, Shiff NJ, Tucker LB, Huber AM, et al. Causal pathways to health-related quality of life in children with juvenile idiopathic arthritis: results from the ReACCh-Out cohort. Rheumatology (Oxford). 2021;60(10):4691–702.
4. Sen ES, Morgan MJ, MacLeod R, Strike H, Hinchcliffe A, Dick AD, et al. Cross sectional, qualitative thematic analysis of patient perspectives of disease impact in juvenile idiopathic arthritis-associated uveitis. Pediatr Rheumatol Online J. 2017;15(1):58.
5. Ravelli A, Consolaro A, Horneff G, Laxer RM, Lovell DJ, Wulffraat NM, et al. Treating juvenile idiopathic arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2018;77(6):819–28.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献