A note on the semidiurnal non-migrating tide at polar latitudes

Author:

Aso Takehiko

Abstract

Abstract In the Antarctic upper mesosphere and lower thermosphere around 90 km, meteor radar observations at the South Pole have detected a significant semidiurnal wind component in summer which is found to be non-migrating with zonal wavenumber s = 1. It has been surmised that this component might possibly be excited through the non-linear interaction of the migrating semidiurnal tide with stationary planetary waves with zonal wavenumber s = 1 prevailing at stratospheric heights. The Kyushu University GCM has been successful in elucidating very unambiguously this conjecture. In the present paper, linearized steady tidal modeling is carried out in this connection to reproduce, by a fairly simplified but explicit model, trans-equatorial propagation of non-migrating semidiurnal tide forced in the opposite winter hemisphere and to compare latitudinal structures of migrating and non-linearly excited intermittent tides in view of polar latitudes where non-migrating tide tends to dominate over migrating tide. It is also shown that the re-analysis meteorological data for almost 10 years clearly supports the well-known N-S asymmetry in stationary planetary wave activity in winter polar stratospheric regions, possibly due to the difference in surface topography between two hemispheres. We suggest that there might be significant asymmetry in the summertime enhancement of semidiurnal non-migrating tide between both polar regions. This phenomenon may be in a context similar with the N-S asymmetry of gravity wave activity in the polar regions, possibly giving rise to N-S disparity of cold summertime mesopause temperature. Clarification awaits intensive bi-polar studies by coordinated radar and optical observations which are running both in the Arctic and Antarctic regions.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3