Author:
Zhu Jinguo,Chen Shuzhen,Wang Jinju,Zhang Cheng,Zhang Wei,Liu Peng,Ma Ruilian,Chen Yanfang,Yao Zhen
Abstract
Abstract
Background
The spleen is an active lymphoid organ. The effect of splenectomy on the immune response remains unclear. This study investigated whether splenectomy can induce immune tolerance and has a beneficial role in cardiac allograft.
Methods
Wistar rats were used for heart donors. The Sprague–Dawley (SD) rats designated as the recipients of heart transplantation (HT) were randomly assigned into four groups: sham, splenectomy, HT, splenectomy + HT. The survival of transplanted hearts was assessed by daily checking of abdominal palpation. At various time points after transplantation, the transplanted hearts were collected and histologically examined; the level of CD4
+CD25
+ T regulatory lymphocytes (Tregs) and rate of lymphocyte apoptosis (annexin-v+ PI+ cells) in the blood were analyzed by using flow cytometric method.
Results
1) Splenectomy significantly prolonged the mean survival time of heart allografts (7 ± 1.1 days and 27 ± 1.5 days for HT and splenectomy + HT, respectively; n = 12-14/group, HT vs. splenectomy + HT, p < 0.001); 2) Splenectomy delayed pathological changes (inflammatory cell infiltration, myocardial damage) of the transplanted hearts in splenectomy + HT rats; 3) The level of CD4
+CD25
+ Tregs in the blood of splenectomized rats was significantly increased within 7 days (2.4 ± 0.5%, 4.9 ± 1.3% and 5.3 ± 1.0% for sham, splenectomy and splenectomy + HT, respectively; n = 15/group, sham vs. splenectomy or splenectomy + HT, p < 0.05) after splenectomy surgery and gradually decreased to baseline level; 4) Splenectomy increased the rate of lymphocyte apoptosis (day 7: 0.3 ± 0.05%, 3.9 ± 0.9% and 4.1 ± 0.9% for sham, splenectomy and splenectomy + HT, respectively; n = 15/group, sham vs. splenectomy or splenectomy + HT, p < 0.05) in a pattern similar to the change of the CD4
+CD25
+ Tregs in the blood.
Conclusions
Splenectomy inhibits the development of pathology and prolongs the survival time of cardiac allograft. The responsible mechanism is associated with induction of immune tolerance via elevating CD4
+CD25
+ Tregs and increasing lymphocyte apoptosis.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine
Reference28 articles.
1. Patel JK, Kittleson M, Kobashigawa JA: Cardiac allograft rejection. Surgeon. 2011, 9: 160-167. 10.1016/j.surge.2010.11.023.
2. Sun Y, Chen X, Zhao J, Zou X, Li G, Li X, Shen B, Sun S: Combined use of rapamycin and leflunomide in prevention of acute cardiac allografts rejection in rats. Transpl Immunol. 2012, 27: 19-24. 10.1016/j.trim.2012.04.001.
3. Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl TE, Fung JJ, Thomson AW: Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation. 1996, 62: 659-665. 10.1097/00007890-199609150-00021.
4. Lindenfeld J, Miller GG, Shakar SF, Zolty R, Lowes BD, Wolfel EE, Mestroni L, Page RL, Kobashigawa J: Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 2004, 110: 3858-3865. 10.1161/01.CIR.0000150332.42276.69.
5. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995, 155: 1151-1164.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献