Author:
Torbrand Christian,Ugander Martin,Engblom Henrik,Arheden Håkan,Ingemansson Richard,Malmsjö Malin
Abstract
Abstract
Background
Negative pressure wound therapy (NPWT) is believed to initiate granulation tissue formation via macro-deformation of the wound edge. However, only few studies have been performed to evaluate this hypothesis. The present study was performed to investigate the effects of NPWT on wound contraction and wound edge tissue deformation.
Methods
Six pigs underwent median sternotomy followed by magnetic resonance imaging in the transverse plane through the thorax and sternotomy wound during NPWT at 0, -75, -125 and -175 mmHg. The lateral width of the wound and anterior-posterior thickness of the wound edge was measured in the images.
Results
The sternotomy wound decreased in size following NPWT. The lateral width of the wound, at the level of the sternum bone, decreased from 39 ± 7 mm to 30 ± 6 mm at -125 mmHg (p = 0.0027). The greatest decrease in wound width occurred when switching from 0 to -75 mmHg. The level of negative pressure did not affect wound contraction (sternum bone: 32 ± 6 mm at -75 mmHg and 29 ± 6 mm at -175 mmHg, p = 0.0897). The decrease in lateral wound width during NPWT was greater in subcutaneous tissue (14 ± 2 mm) than in sternum bone (9 ± 2 mm), resulting in a ratio of 1.7 ± 0.3 (p = 0.0423), suggesting macro-deformation of the tissue. The anterior-posterior thicknesses of the soft tissue, at 0.5 and 2.5 cm laterally from the wound edge, were not affected by negative pressure.
Conclusions
NPWT contracts the wound and causes macro-deformation of the wound edge tissue. This shearing force in the tissue and at the wound-foam interface may be one of the mechanisms by which negative pressure delivery promotes granulation tissue formation and wound healing.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine
Reference29 articles.
1. Raudat CW, Pagel J, Woodhall D: Early intervention and aggressive management of infected median sternotomy incision: a review of 2242 open-heart procedures. Am Surg. 1997, 63 (3): 238-41. discussion 241-2
2. El Oakley RM, Wright JE: Postoperative mediastinitis: classification and management. Ann Thorac Surg. 1996, 61 (3): 1030-6. 10.1016/0003-4975(95)01035-1.
3. Crabtree TD, Codd JE, Fraser VJ: Multivariate analysis of risk factors for deep and superficial sternal infection after coronary artery bypass grafting at a tertiary care medical center. Semin Thorac Cardiovasc Surg. 2004, 16 (1): 53-61. 10.1053/j.semtcvs.2004.01.009.
4. Lu JC, Grayson AD, Jha P: Risk factors for sternal wound infection and mid-term survival following coronary artery bypass surgery. Eur J Cardiothorac Surg. 2003, 23 (6): 943-9. 10.1016/S1010-7940(03)00137-4.
5. Obdeijn MC, de Lange MY, Lichtendahl DH: Vacuum-assisted closure in the treatment of poststernotomy mediastinitis. Ann Thorac Surg. 1999, 68 (6): 2358-60. 10.1016/S0003-4975(99)01159-5.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献