Abstract
Abstract
Objective
Random effects are often neglected when defining the control strategy for a biopharmaceutical process. In this article, we present a case study that highlights the importance of considering the variance introduced by random effects in the calculation of proven acceptable ranges (PAR), which form the basis of the control strategy.
Methods
Linear mixed models were used to model relations between process parameters and critical quality attributes in a set of unit operations that comprises a typical biopharmaceutical manufacturing process. Fitting such models yields estimates of fixed and random effect sizes as well as random and residual variance components. To form PARs, tolerance intervals specific to mixed models were applied that incorporate the random effect contribution to variance.
Results
We compared standardized fixed and random effect sizes for each unit operation and CQA. The results show that the investigated random effect is not only significant but in some unit operations even larger than the average fixed effect. A comparison between ordinary least squares and mixed models tolerance intervals shows that neglecting the contribution of the random effect can result in PARs that are too optimistic.
Conclusions
Uncontrollable effects such as week-to-week variability play a major role in process variability and can be modelled as a random effect. Following a workflow such as the one suggested in this article, random effects can be incorporated into a statistically sound control strategy, leading to lowered out of specification results and reduced patient risk.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Alkharusi H (2012) Categorical variables in regression analysis: a comparison of dummy and effect coding. Int J Educ 4:202–210
2. Burdick RK, LeBlond DJ, Pfahler LB, Quiroz J, Sidor L, Vukovinsky K, Zhang L (2017) "Process design: stage 1 of the FDA process validation guidance," in Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, Springer, pp 115–154
3. FDA, Process validation: general principles and practices, 2011.
4. Francq BG, Lin D, Hoyer W (2019) Confidence, prediction, and tolerance in linear mixed models. Stat Med 38(30):5603–5622
5. Goos P, Langhans I, Vandebroek M (2006) Practical inference from industrial split-plot designs. J Qual Technol 38(2):162–179
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献