Analysing 3429 digital supervisory interactions between Community Health Workers in Uganda and Kenya: the development, testing and validation of an open access predictive machine learning web app

Author:

O’Donovan JamesORCID,Kahn Ken,MacRae MacKenzie,Namanda Allan Saul,Hamala Rebecca,Kabali Ken,Geniets Anne,Lakati Alice,Mbae Simon M.,Winters Niall

Abstract

Abstract Background Despite the growth in mobile technologies (mHealth) to support Community Health Worker (CHW) supervision, the nature of mHealth-facilitated supervision remains underexplored. One strategy to support supervision at scale could be artificial intelligence (AI) modalities, including machine learning. We developed an open access, machine learning web application (CHWsupervisor) to predictively code instant messages exchanged between CHWs based on supervisory interaction codes. We document the development and validation of the web app and report its predictive accuracy. Methods CHWsupervisor was developed using 2187 instant messages exchanged between CHWs and their supervisors in Uganda. The app was then validated on 1242 instant messages from a separate digital CHW supervisory network in Kenya. All messages from the training and validation data sets were manually coded by two independent human coders. The predictive performance of CHWsupervisor was determined by comparing the primary supervisory codes assigned by the web app, against those assigned by the human coders and calculating observed percentage agreement and Cohen’s kappa coefficients. Results Human inter-coder reliability for the primary supervisory category of messages across the training and validation datasets was ‘substantial’ to ‘almost perfect’, as suggested by observed percentage agreements of 88–95% and Cohen’s kappa values of 0.7–0.91. In comparison to the human coders, the predictive accuracy of the CHWsupervisor web app was ‘moderate’, suggested by observed percentage agreements of 73–78% and Cohen’s kappa values of 0.51–0.56. Conclusions Augmenting human coding is challenging because of the complexity of supervisory exchanges, which often require nuanced interpretation. A realistic understanding of the potential of machine learning approaches should be kept in mind by practitioners, as although they hold promise, supportive supervision still requires a level of human expertise. Scaling-up digital CHW supervision may therefore prove challenging. Trial registration: This was not a clinical trial and was therefore not registered as such.

Funder

economic and social research council

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Public Administration

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3