Author:
Wu Xiangmei,Bennett Deborah H,Lee Kiyoung,Cassady Diana L,Ritz Beate,Hertz-Picciotto Irva
Abstract
Abstract
Background
Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.
Method
We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.
Results
As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.
Conclusions
This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference25 articles.
1. McCurdy T: Modeling the dose profile in human exposure assessments: Ozone as an example." Reviews in Toxicology. Series D. 1997, 1: 3-23.
2. Xue JP, McCurdy T, Spengler J, Ozkaynak H: Understanding variability in time spent in selected locations for 7-12-year old children. Journal of Exposure Analysis and Environmental Epidemiology. 2004, 14: 222-233. 10.1038/sj.jea.7500319.
3. Wallace LA, Pellizzari ED, Hartwell TD, Sparacino C, Sheldon L, Zelon H: Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Environmental Research. 1985, 19: 1651-1661.
4. Wiley JA, Robinson JP, Cheng Y, Piazza T, Stork L, Plasden K: Study of children's activity patterns. 1991, Sacramento, CA: California Environmental Protection Agency, Air Resources Board Research Division
5. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology. 2001, 11: 231-252. 10.1038/sj.jea.7500165.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献