Author:
Del Razo Luz M,García-Vargas Gonzalo G,Valenzuela Olga L,Castellanos Erika Hernández,Sánchez-Peña Luz C,Currier Jenna M,Drobná Zuzana,Loomis Dana,Stýblo Miroslav
Abstract
Abstract
Background
Human exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico.
Methods
We used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity.
Results
The prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAsIII) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (β -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance.
Conclusions
Our study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAsIII.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference38 articles.
1. Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E: Arsenic Exposure and Type 2 Diabetes: A Systematic Review of the Experimental and Epidemiological Evidence. Environ Health Perspect. 2006, 114: 641-648.
2. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E: Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA. 2008, 300: 814-822. 10.1001/jama.300.7.814.
3. Zierold KM, Knobeloch L, Anderson H: Prevalence of chronic diseases in adults exposed to arsenic-contaminated drinking water. Am J Public Health. 94: 1936-1937.
4. Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M: Molecular mechanisms of diabetogenic effects of arsenic: Inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect. 2007, 115: 734-742. 10.1289/ehp.9867.
5. Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M: Arsenic (+3 oxidation state) methyltransferase and methylation of arsenicals. Exp Biol Med. 2007, 232: 3-13.
Cited by
193 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献