Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh
-
Published:2010-07-10
Issue:1
Volume:9
Page:
-
ISSN:1476-069X
-
Container-title:Environmental Health
-
language:en
-
Short-container-title:Environ Health
Author:
Ali Nurshad,Hoque Md Ashraful,Haque Abedul,Salam Kazi Abdus,Karim Md Rezaul,Rahman Aminur,Islam Khairul,Saud Zahangir Alam,Khalek Md Abdul,Akhand Anwarul Azim,Hossain Mostaque,Mandal Abul,Karim Md Rezaul,Miyataka Hideki,Himeno Seiichiro,Hossain Khaled
Abstract
Abstract
Background
Arsenic is a potent pollutant that has caused an environmental catastrophe in certain parts of the world including Bangladesh where millions of people are presently at risk due to drinking water contaminated by arsenic. Chronic arsenic exposure has been scientifically shown as a cause for liver damage, cancers, neurological disorders and several other ailments. The relationship between plasma cholinesterase (PChE) activity and arsenic exposure has not yet been clearly documented. However, decreased PChE activity has been found in patients suffering liver dysfunction, heart attack, cancer metastasis and neurotoxicity. Therefore, in this study, we evaluated the PChE activity in individuals exposed to arsenic via drinking water in Bangladesh.
Methods
A total of 141 Bangladeshi residents living in arsenic endemic areas with the mean arsenic exposure of 14.10 ± 3.27 years were selected as study subjects and split into tertile groups based on three water arsenic concentrations: low (< 129 μg/L), medium (130-264 μg/L) and high (> 265 μg/L). Study subjects were further sub-divided into two groups (≤50 μg/L and > 50 μg/L) based on the recommended upper limit of water arsenic concentration (50 μg/L) in Bangladesh. Blood samples were collected from the study subjects by venipuncture and arsenic concentrations in drinking water, hair and nail samples were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PChE activity was assayed by spectrophotometer.
Results
Arsenic concentrations in hair and nails were positively correlated with the arsenic levels in drinking water. Significant decreases in PChE activity were observed with increasing concentrations of arsenic in water, hair and nails. The average levels of PChE activity in low, medium and high arsenic exposure groups were also significantly different between each group. Lower levels of PChE activity were also observed in the > 50 μg/L group compared to the ≤50 μg/L group. Moreover, PChE activity was significantly decreased in the skin (+) symptoms group compared to those without (-).
Conclusions
We found a significant inverse relationship between arsenic exposure and PChE activity in a human population in Bangladesh. This research demonstrates a novel exposure-response relationship between arsenic and PChE activity which may explain one of the biological mechanisms through which arsenic exerts its neuro-and hepatotoxicity in humans.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference40 articles.
1. Mazumder DNG, Ghoshal UC, Saha J, Santra A, De BK, Chatterjee A, Dutta S, Angle CR, Centeno JA: Randomizedplacebo-controlled trial of 2, 3-dimercaptosuccinic acid in therapy of chronic arsenicosis due to drinking arsenic-contaminated subsoil water. J Toxicol Clin Toxicol. 1998, 36: 683-690. 10.3109/15563659809162616. 2. Mazumder DNG, Haque R, Gosh N, De BK, Santra A, Chakraborty D, Smith AH: Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemio. 1998, 27: 871-877. 10.1093/ije/27.5.871. 3. Sambu S, Wilson R: Arsenic in food and water-a brief history. Toxicol Ind Health. 2008, 24: 217-226. 10.1177/0748233708094096. 4. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP: Complete remission after treatment of acute promyelocytic leukaemia with arsenic trioxide. N Engl J Med. 1998, 339: 1341-1348. 10.1056/NEJM199811053391901. 5. Zheng Y, Stute M, Van Geen A, Gavrieli I, Dhar R, Simpson HJ, Schlosser P, Ahmed KM: Redox control of arsenic mobilization in Bangladesh groundwater. Appl Geochem. 2004, 19: 201-214. 10.1016/j.apgeochem.2003.09.007.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|