Author:
Trasande Leonardo,Cortes Juanita E,Landrigan Philip J,Abercrombie Mary I,Bopp Richard F,Cifuentes Enrique
Abstract
Abstract
Background
Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated.
Methods
Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age.
Results
Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm). Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations.
Conclusions
Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference48 articles.
1. Goldman LR, Shannon MW, for the American Academy of Pediatrics Committee on Environmental Health: Technical report: mercury in the environment: implications for pediatricians. Pediatrics. 2001, 108: 197-205. 10.1542/peds.108.1.197.
2. US EPA: Mercury Study Report to Congress Volume I: Executive Summary, Office of Air Quality Planning and Standards and Office of Research and Development. Environmental Protection Agency (1997 (Dec)) EPA-4521R-97-003. 1997
3. US EPA: Technology Transfer Network (TTN), Clearinghouse for Inventories and Emissions Factors. National Emissions Inventories for Hazardous Air Pollutants, 1999. Version 3. 2003, Accessed May 18, 2004, [http://www.epa.gov/ttn/chief]
4. Lacerda LD: Global mercury emissions from gold and silver mining. Water, Air, & Soil Pollution. 1997, 97: 209-221.
5. Nriagu JO: A global assessment of natural sources of atmospheric trace metals. Nature. 1989, 338: 47-49. 10.1038/338047a0.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献