Glutathione deficiency down-regulates hepatic lipogenesis in rats

Author:

Brandsch Corinna,Schmidt Tobias,Behn Diana,Weiße Kristin,Mueller Andreas S,Stangl Gabriele I

Abstract

Abstract Background Oxidative stress is supposed to increase lipid accumulation by stimulation of hepatic lipogenesis at transcriptional level. This study was performed to investigate the role of glutathione in the regulation of this process. For that purpose, male rats were treated with buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase, for 7 days and compared with untreated control rats. Results BSO treatment caused a significant reduction of total glutathione in liver (-70%), which was attributable to diminished levels of reduced glutathione (GSH, -71%). Glutathione-deficient rats had lower triglyceride concentrations in their livers than the control rats (-23%), whereas the circulating triglycerides and the cholesterol concentrations in plasma and liver were not different between the two groups of rats. Livers of glutathione-deficient rats had lower mRNA abundance of sterol regulatory element-binding protein (SREBP)-1c (-47%), Spot (S)14 (-29%) and diacylglycerol acyltransferase 2 (DGAT-2, -27%) and a lower enzyme activity of fatty acid synthase (FAS, -26%) than livers of the control rats. Glutathione-deficient rats had also a lower hepatic activity of the redox-sensitive protein-tyrosine phosphatase (PTP)1B, and a higher concentration of irreversible oxidized PTP1B than control rats. No differences were observed in protein expression of total PTP1B and the mature mRNA encoding active XBP1s, a key regulator of unfolded protein and ER stress response. Conclusion This study shows that glutathione deficiency lowers hepatic triglyceride concentrations via influencing lipogenesis. The reduced activity of PTP1B and the higher concentration of irreversible oxidized PTP1B could be, at least in part, responsible for this effect.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3